

Canon Medical Systems Corporation % Orlando Tadeo, Jr. Sr. Manager, Regulatory Affairs Canon Medical Systems USA, Inc. 2441 Michelle Drive TUSTIN CA 92780

June 12, 2019

Re: K183046

Trade/Device Name: Aquilion ONE (TSX-305A/6) V8.9 with AiCE

Regulation Number: 21 CFR 892.1750

Regulation Name: Computed tomography x-ray system

Regulatory Class: Class II

Product Code: JAK Dated: April 25, 2019 Received: April 30, 2019

Dear Mr. Tadeo:

We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. Although this letter refers to your product as a device, please be aware that some cleared products may instead be combination products. The 510(k) Premarket Notification Database located at <a href="https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm">https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm</a> identifies combination product submissions. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration. Please note: CDRH does not evaluate information related to contract liability warranties. We remind you, however, that device labeling must be truthful and not misleading.

If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to additional controls. Existing major regulations affecting your device can be found in the Code of Federal Regulations, Title 21, Parts 800 to 898. In addition, FDA may publish further announcements concerning your device in the <u>Federal Register</u>.

Please be advised that FDA's issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal statutes and regulations administered by other Federal agencies. You must comply with all the Act's requirements, including, but not limited to: registration and listing (21 CFR Part 807); labeling (21 CFR Part 801); medical device reporting (reporting of medical device-related adverse events) (21 CFR 803) for

devices or postmarketing safety reporting (21 CFR 4, Subpart B) for combination products (see <a href="https://www.fda.gov/combination-products/guidance-regulatory-information/postmarketing-safety-reporting-combination-products">https://www.fda.gov/combination-products/guidance-regulatory-information/postmarketing-safety-reporting-combination-products</a>); good manufacturing practice requirements as set forth in the quality systems (QS) regulation (21 CFR Part 820) for devices or current good manufacturing practices (21 CFR 4, Subpart A) for combination products; and, if applicable, the electronic product radiation control provisions (Sections 531-542 of the Act); 21 CFR 1000-1050.

Also, please note the regulation entitled, "Misbranding by reference to premarket notification" (21 CFR Part 807.97). For questions regarding the reporting of adverse events under the MDR regulation (21 CFR Part 803), please go to <a href="https://www.fda.gov/medical-devices/medical-device-safety/medical-device-reporting-mdr-how-report-medical-device-problems">https://www.fda.gov/medical-device-problems</a>.

For comprehensive regulatory information about medical devices and radiation-emitting products, including information about labeling regulations, please see Device Advice (<a href="https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance">https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance</a>) and CDRH Learn (<a href="https://www.fda.gov/training-and-continuing-education/cdrh-learn">https://www.fda.gov/training-and-continuing-education/cdrh-learn</a>). Additionally, you may contact the Division of Industry and Consumer Education (DICE) to ask a question about a specific regulatory topic. See the DICE website (<a href="https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/contact-us-division-industry-and-consumer-education-dice">https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/contact-us-division-industry-and-consumer-education-dice">https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/contact-us-division-industry-and-consumer-education-dice</a>) for more information or contact DICE by email (<a href="DICE@fda.hhs.gov">DICE@fda.hhs.gov</a>) or phone (1-800-638-2041 or 301-796-7100).

Sincerely,

For

Thalia T. Mills, Ph.D.

Director

Division of Radiological Health

OHT7: Office of In Vitro Diagnostics

and Radiological Health

Office of Product Evaluation and Quality

Center for Devices and Radiological Health

Enclosure

# DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration

## **Indications for Use**

510(k) Number (if known)

K183046

Form Approved: OMB No. 0910-0120
Expiration Date: 06/30/2020

Expiration Date: 06/30/2020 See PRA Statement below.

| Device Name                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Aquilion ONE (TSX-305A/6) V8.9 with AiCE                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Indications for Use (Describe)                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| This device is indicated to acquire and display cross-sectional volumes of the whole body, to include the head, with the capability to image whole organs in a single rotation. Whole organs include, but are not limited to brain, heart, pancreas, etc.  The Aquilion ONE has the capability to provide volume sets of the entire organ. These volume sets can be used to |  |  |  |  |  |
| perform specialized studies, using indicated software/hardware, of the whole organ by a trained and qualified physician.                                                                                                                                                                                                                                                    |  |  |  |  |  |
| FIRST is an iterative reconstruction algorithm intended to reduce exposure dose and improve high contrast spatial resolution for abdomen, pelvis, chest, cardiac, extremities and head applications.                                                                                                                                                                        |  |  |  |  |  |
| AiCE is a noise reduction algorithm that improves image quality and reduces image noise by employing Deep Convolutional Neural Network methods for abdomen, pelvis, lung and cardiac applications.                                                                                                                                                                          |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Type of Use (Select one or both, as applicable)                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Prescription Use (Part 21 CFR 801 Subpart D) Over-The-Counter Use (21 CFR 801 Subpart C)                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| CONTINUE ON A SEPARATE PAGE IF NEEDED.                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| This section applies only to requirements of the Paperwork Reduction Act of 1995.                                                                                                                                                                                                                                                                                           |  |  |  |  |  |

\*DO NOT SEND YOUR COMPLETED FORM TO THE PRA STAFF EMAIL ADDRESS BELOW.\*

The burden time for this collection of information is estimated to average 79 hours per response, including the time to review instructions, search existing data sources, gather and maintain the data needed and complete and review the collection of information. Send comments regarding this burden estimate or any other aspect of this information collection, including suggestions for reducing this burden, to:

Department of Health and Human Services Food and Drug Administration Office of Chief Information Officer Paperwork Reduction Act (PRA) Staff PRAStaff@fda.hhs.gov

"An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB number."



510(k) SUMMARY K183046

## 1. SUBMITTER'S NAME:

Canon Medical Systems Corporation 1385 Shimoishigami Otawara-Shi, Tochigi-ken, Japan 324-8550

## 2. OFFICIAL CORRESPONDENT:

Naofumi Watanabe Senior Manager, Regulatory Affairs and Vigilance

## 3. ESTABLISHMENT REGISTRATION:

9614698

## 4. CONTACT PERSON:

Orlando Tadeo, Jr. Sr. Manager, Regulatory Affairs Canon Medical Systems USA, Inc 2441 Michelle Drive Tustin, CA 92780 (714) 669-7459

## 5. Date Prepared:

April 25, 2019

## 6. TRADE NAME(S):

Aquilion ONE (TSX-305A/6) V8.9 with AiCE

## 7. COMMON NAME:

System, X-ray, Computed Tomography

## 8. DEVICE CLASSIFICATION (Regulatory Class, CFR Reference, Name):

Class II (per 21 CFR 892.1750, Computed Tomography X-ray System)

## 9. PRODUCT CODE / DESCRIPTION:

JAK / Computed Tomography X-Ray System

## 10. PERFORMANCE STANDARD:

This device conforms to applicable Performance Standards for Ionizing Radiation Emitting Products [21 CFR, Subchapter J, Part 1020]

## 11. PREDICATE DEVICE:

| Product                                                                                              | Marketed<br>by                      | Regulation<br>Number | Regulation<br>Name                     | <b>Product Code</b>                               | 510(k)<br>Number | Clearance<br>Date |
|------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------|----------------------------------------|---------------------------------------------------|------------------|-------------------|
| Aquilion ONE<br>(TSX-305A/3) V8.3 with<br>FIRST 2.1<br>( <i>Primary Predicate</i><br><i>Device</i> ) | Canon<br>Medical<br>Systems,<br>USA | 21 CFR<br>892.1750   | Computed<br>Tomography<br>X-ray System | JAK:<br>System, X-ray,<br>Tomography,<br>Computed | K170177          | 06/30/2017        |

#### 12. REASON FOR SUBMISSION:

Modification of existing medical device

## 13. DEVICE DESCRIPTION:

Aquilion ONE (TSX-305A/6) V8.9 with AiCE is a whole body multi-slice helical CT scanner, consisting of a gantry, couch and a console used for data processing and display. This device captures cross sectional volume data sets used to perform specialized studies, using indicated software/hardware, by a trained and qualified physician. This system is based upon the technology and materials of previously marketed Canon CT systems. In addition, the subject device incorporates the latest reconstruction technology, AiCE (Advanced intelligent Clear-IQ Engine), intended to reduce image noise and improve image quality by utilizing Deep Convolutional Neural Network methods. These methods can more fully explore the statistical properties of the signal and noise. By learning to differentiate structure from noise, the algorithm produces fast, high quality CT reconstruction.

## 14. INDICATIONS FOR USE:

This device is indicated to acquire and display cross-sectional volumes of the whole body, to include the head, with the capability to image whole organs in a single rotation. Whole organs include, but are not limited to brain, heart, pancreas, etc.

The Aquilion ONE has the capability to provide volume sets of the entire organ. These volume sets can be used to perform specialized studies, using indicated software/hardware, of the whole organ by a trained and qualified physician.

FIRST is an iterative reconstruction algorithm intended to reduce exposure dose and improve high contrast spatial resolution for abdomen, pelvis, chest, cardiac, extremities and head applications.

AiCE is a noise reduction algorithm that improves image quality and reduces image noise by employing Deep Convolutional Neural Network methods for abdomen, pelvis, lung and cardiac applications.

## 15. SUBSTANTIAL EQUIVALENCE:

The **Aquilion ONE** (TSX-305A/6) V8.9 with AiCE, is substantially equivalent to the Aquilion ONE (TSX-305A/3) V8.3 with FIRST 2.1, which received premarket clearance under K170177and is marketed by Canon Medical Systems USA. The intended use of the Aquilion ONE is the same as that of the predicate device. The changes made to the subject device include the addition of AiCE (Advanced intelligent Clear-IQ Engine), a reconstruction algorithm that utilizes Deep Convolutional Neural Network methods to reduce image noise and improve image quality. A comparison of the technological characteristics between the subject and the predicate device is included below.

| Item                  | Aquilion ONE (TSX-305A/6) V8.9       | Aquilion ONE (TSX-305A/3) V8.3 with |  |  |
|-----------------------|--------------------------------------|-------------------------------------|--|--|
|                       | with AiCE                            | FIRST 2.1 (K170177)                 |  |  |
| Anatomical Region     | AIDR 3D                              | AIDR 3D                             |  |  |
|                       | (Whole Body)                         | (Whole Body)                        |  |  |
|                       |                                      |                                     |  |  |
|                       | FIRST                                | FIRST                               |  |  |
|                       | (Abdomen, pelvis, lung, cardiac,     | (Abdomen, pelvis, lung, cardiac,    |  |  |
|                       | extremities and head)                | extremities and head)               |  |  |
|                       |                                      |                                     |  |  |
|                       | AiCE                                 |                                     |  |  |
|                       | (Abdomen, pelvis, lung, and cardiac) |                                     |  |  |
| Noise Reduction       | AIDR 3D                              | AIDR 3D                             |  |  |
| Processing            | AIDR 3D Enhanced                     | AIDR 3D Enhanced                    |  |  |
|                       | Quantum Denoising Smoothing (QDS)    | Quantum Denoising Smoothing (QDS)   |  |  |
|                       | AiCE                                 |                                     |  |  |
| Processing capability | Console CKCN-018B/1                  | Console CKCN-018A/3                 |  |  |
|                       | Reconstruction processing unit       | I-REC BOX (FIRST only)              |  |  |
|                       | (AiCE/FIRST)                         |                                     |  |  |
| Display console kit   | CGS-94A (Optional)*                  | CGS-75A (Optional)                  |  |  |
| Image Quality Claim   | -Improved Quantitative Spatial       | No change                           |  |  |
|                       | Resolution over AIDR 3D              |                                     |  |  |
|                       | -Improved Quantitative Dose          | No change                           |  |  |
|                       | Reduction over AIDR 3D               |                                     |  |  |
|                       | -Improved Low-contrast Detectability | No change                           |  |  |
|                       | over AIDR 3D                         |                                     |  |  |

<sup>\*</sup>Minor hardware changes to increase data processing capability

## 16. SAFETY:

The device is designed and manufactured under the Quality System Regulations as outlined in 21 CFR § 820 and ISO 13485 Standards. This device is in conformance with the applicable parts of the following standards IEC60601-1, IEC60601-1-1, IEC60601-1-2, IEC60601-1-3, IEC60601-1-4, IEC60601-1-6, IEC60601-2-28, IEC60601-2-32, IEC60601-2-44, IEC60825-1, IEC62304, IEC62366, NEMA XR-25, NEMA XR-26 and NEMA PS 3.1-3.18. Additionally, this device complies with all applicable requirements of the radiation safety performance standards, as outlined in 21 CFR §1010 and §1020.

## 17. TESTING

Risk analysis and verification/validation testing conducted through bench testing demonstrate that the established specifications for the device have been met.

## **Image Quality Evaluation:**

CT image quality metrics were performed, utilizing phantoms, to assess Contrast-to-Noise Ratios (CNR), CT Number Accuracy, Uniformity, Slice Sensitivity Profile (SSP), Modulation Transfer Function (MTF)-Wire, Modulation Transfer Function (MTF)-Edge, Standard Deviation of Noise (SD), Noise Power Spectra (NPS), Low Contrast Detectability (LCD) and Pediatric water phantom. AiCE is substantially equivalent to the predicate device as demonstrated by the results of the above testing.

## **Quantitative Spatial Resolution Evaluation:**

A comparison study was conducted, utilizing phantoms, in order to support a quantitative spatial resolution improvement claim of 7.4 lp/cm at 10% of the MTF for AiCE, relative to 5.7 lp/cm at 10% of the MTF when using AIDR 3D/STANDARD.

## Quantitative Body LCD & Noise Improvement and Dose Reduction:

A model observer evaluation was conducted and the subject device demonstrated a dose reduction of 79.6-82.4% compared to filtered back projection, a 12.2% improvement in low contrast detectability and 29.2% noise reduction at the same dose for body compared to AIDR 3D.

## **Low-contrast Detectability Evaluation:**

A phantom study was conducted in order to support claims of low-contrast detectability of 1.5 mm at 0.3% with 22.6mGy.

## Noise Texture Reader Study:

A phantom study was conducted and it was determined that the noise appearance/texture produced by the AiCE reconstruction is more similar to standard filtered backprojection than texture produced by the FIRST reconstruction.

Representative abdomen/pelvis, lung, and cardiac diagnostic images, reviewed by an American Board Certified Radiologist, were obtained using the subject device and it was confirmed that the AiCE reconstructed images were of diagnostic quality.

Software Documentation for a Moderate Level of Concern, per the FDA guidance document, "Guidance for the Content of Premarket Submissions for Software Contained in Medical Devices Document" issued on May 11, 2005, is also included as part of this submission.

Cybersecurity documentation, per the FDA cybersecurity premarket guidance document "Content of Premarket Submissions for Management of Cybersecurity in Medical Devices" issued on October 2, 2014, is also included as part of this submission.

Additionally, testing of the subject device was conducted in accordance with the applicable standards published by the International Electrotechnical Commission (IEC) for Medical Devices and CT Systems.

## 18. CONCLUSION

The **Aquilion ONE (TSX-305A/6) V8.9 with AiCE** performs in a manner similar to and is intended for the same use as the predicate device, as indicated in product labeling. Based upon this information, conformance to standards, successful completion of software validation, application of risk management and design controls and the performance data presented in this submission it is concluded that the subject device has demonstrated substantial equivalence to the predicate device and is safe and effective for its intended use.